Transfer Nonnegative Matrix Factorization for Image Representation
نویسندگان
چکیده
Nonnegative Matrix Factorization (NMF) has received considerable attention due to its psychological and physiological interpretation of naturally occurring data whose representation may be partsbased in the human brain. However, when labeled and unlabeled images are sampled from different distributions, they may be quantized into different basis vector space and represented in different coding vector space, which may lead to low representation fidelity. In this paper, we investigate how to extend NMF to cross-domain scenario. We accomplish this goal through TNMF a novel semi-supervised transfer learning approach. Specifically, we aim to minimize the distribution divergence between labeled and unlabeled images, and incorporate this criterion into the objective function of NMF to construct new robust representations. Experiments show that TNMF outperforms state-of-the-art methods on real datasets.
منابع مشابه
A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملImage representation using Laplacian regularized nonnegative tensor factorization
Tensor provides a better representation for image space by avoiding information loss in vectorization. Nonnegative tensor factorization (NTF), whose objective is to express an n-way tensor as a sum of k rank-1 tensors under nonnegative constraints, has recently attracted a lot of attentions for its efficient and meaningful representation. However, NTF only sees Euclidean structures in data spac...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کامل